Parametric analysis of RNA ‐seq expression data
نویسندگان
چکیده
منابع مشابه
Differential Expression Analysis for RNA-Seq Data
RNA-Seq is increasingly being used for gene expression profiling. In this approach, next-generation sequencing (NGS) platforms are used for sequencing. Due to highly parallel nature, millions of reads are generated in a short time and at low cost. Therefore analysis of the data is a major challenge and development of statistical and computational methods is essential for drawing meaningful conc...
متن کاملDifferential expression analysis of RNA–Seq data using DESeq2
3 RNA–Seq data preprocessing 2 3.1 Creation of a sample metadata table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3.2 Quality control commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3.3 Alignment of reads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3.4 Sorting and in...
متن کاملComputational analysis of bacterial RNA-Seq data
Recent advances in high-throughput RNA sequencing (RNA-seq) have enabled tremendous leaps forward in our understanding of bacterial transcriptomes. However, computational methods for analysis of bacterial transcriptome data have not kept pace with the large and growing data sets generated by RNA-seq technology. Here, we present new algorithms, specific to bacterial gene structures and transcrip...
متن کاملrSeqNP: a non-parametric approach for detecting differential expression and splicing from RNA-Seq data
UNLABELLED High-throughput sequencing of transcriptomes (RNA-Seq) has become a powerful tool to study gene expression. Here we present an R package, rSeqNP, which implements a non-parametric approach to test for differential expression and splicing from RNA-Seq data. rSeqNP uses permutation tests to access statistical significance and can be applied to a variety of experimental designs. By comb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Genes to Cells
سال: 2016
ISSN: 1356-9597,1365-2443
DOI: 10.1111/gtc.12372